
Abstract 

Convolutional networks and traditional stereo 
matching algorithms are both state-of-the-art methods, 
which can sometimes be combined to achieve more 
accurate results. We implement a Siamese network that 
uses the inner product of the output of two branches as 
the matching cost, and show their favorable 
performance, compared to traditional algorithms with 
a matching cost of absolute difference. Besides this 
first step of match cost computation, we also 
implement a second step of cost aggregation with 
average pooling and a third step of disparity 
optimization with semi-global matching, which further 
improves the accuracy of the computed stereo map.  We 
also show that by using dilated convolution in the 
network architecture, we can achieve comparable 
accuracy while greatly improving the computational 
efficiency. 

1. Introduction 

Stereo vision is one of the most important research 
topics in computer vision, with its application in 
robotics, autonomous driving and augmented reality. 
Stereo vision is the extraction of 3D information such 
as shapes and appearance from 2D images. It has been 
one of the most important topics in the area of 
computer vision. A important area of stereo vision is 
stereo matching, which is to extract the depth 
information from a pair of rectified images taken from 
left and right cameras (or eyes).  Here we want to 
produce the disparity map, encoding the disparity 
value, which is the difference in location of the object 
in the image of left and right cameras. Assuming a 
focal length  for the cameras, a camera separation of 

, and a disparity of , we can calculate the depth of 
the object from: 

               (1.1)

Traditional stereo matching algorithms measure the 
similarity using the matching cost, usually absolute 
difference (AD) or squared difference (SD). More 
advanced traditional methods are also being developed 

[ , ]. Like other traditional machine learning 1 2
algorithms, traditional stereo matching algorithms 
usually requires manual choice of some parameters. As 
the rapid development of deep learning techniques like 
convolutional neural network and computer hardware, 
many new stereo matching algorithms are developed 
which can achieve much better accuracy than 
traditional methods. In the meanwhile, traditional 
methods are still playing important roles in many 
aspects.  

In this report, we implement a state-of-art deep 
learning stereo matching algorithm, based on a 
Siamese network architecture, and compare its 
performance with traditional method based on a 
matching cost of absolute difference. We evaluate both 
the computational efficiency and accuracy quantified 
by the three pixel error. For further refinement, we also 
utilize average filtering for cost aggregation and semi-
global matching for disparity optimization. The link to 
the git repository is https://github.com/harrainy18/
cs231a_project.git. 

2. Related work 

2.1. Traditional stereo matching algorithm 

Traditional stereo matching algorithms includes both 
local and global approaches [ ]. The local approach 3
uses sliding window, utilizing a simple matching cost 
of absolute difference (AD), squared difference (SD), 
normalized cross correlation (NCC), etc. These 
algorithms may fail for situations such as repeated 
patterns and textureless regions. An example of global 
methods is the energy minimization method [ ], which 4
add smoothness to the cost function, based on the 
assumption that adjacent pixels should move about the 
same amount. In general, local approaches runs faster 
but gives less accuracy than global approaches. 

There are generally four steps in a stereo matching 
algorithm — matching cost computation, cost 
aggregation, disparity computation/optimization, and 
disparity refinement [3]. The first and most important 
step is matching cost computation. The matching cost 
can be computed using AD, SD, NCC, etc. Cost 
aggregation can be done using average filtering or 
cross based cost aggregation. There are many ways of 
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disparity optimization, such as graphic cut, scanline 
optimization and semi-global matching [ ]. Finally, the 5
disparity map can be refined to deal with problems 
such as invalid matches occlusion. The methods for 
disparity refinement include slated plane smoothing 
and left-to-right-consistency check.  

2.2. Deep learning for stereo matching 

CNN advances the development of many aspects of 
computer vision, such as image recognition, video 
analysis, image segmentation, 3D reconstruction, etc. 
Many CNN based stereo matching algorithms are 
developed [ , , ]. Zbontar and LeCun [6] 6 7 8
Implemented the MC-CNN network to compute the 
matching cost for disparity map. The left and right 
images are each sent into a CNN, and the outputs are 
are concatenated and sent to more layers for further 
processing. W. Luo et al. [8] proposed a different 
Siamese network architecture. In the model, a Siamese 
network is used to extract marginal distributions over 
all possible disparities for each pixel and an inner 
product layer to connect the two branches of the 
network. Using a simple product operation instead of 
additional CNN layers, Luo et al. was able to achieve 
much faster computation. The matching cost is 
computed from the Siamese network, then cost 
aggregation is applied by average pooling and further 
optimized using semi global block matching (SGM) or/
and slanted plane approach. 

3. Approach 

3.1. Traditional method 

The difference of various stereo matching 
algorithms generally lies in how the matching cost is 
computed. The matching cost is a function of the pixel 
location in the image  and disparity , 
where . Here  is the maximum 
disparity and  is the range of all 
possible disparities. We use a simple matching cost of 
AD in our implementation. We have also tested SD, 
which gives similar results to AD. After cost 
computation, the disparity map is computed using a 
“winner takes all” approach: 

   

                    (3.1) 

3.2. CNN for stereo matching 

We implement the siamese network architecture in 
Ref. 8. The architecture of the network, which we 
name as “Net1”, is shown in Figure 1, with 9 layers 
( ).  The left and right images are sent to the  
same convolutional network, respectively. Then an 
inner product is taken for the output from the two 
networks to get the cost volume , where 

 denotes the parameters of the model. 
We use a total of 9 layers in each CNN network. The 

kernel size is chosen to be  with a stride of 1. The 
first three layers we use 32 filters, and for the rest we 
use 64 filters for each layer. Batch normalization is 
used in each layer to help with the issue of internal 
covariate shift that slows down the training process. 

(xi, yi) C (xi, yi, d )
d ∈ (−dmax, dmax) dmax

drange = 2dmax + 1

dest(xi, yi) = argmin
d

C (xi, yi, d )

= argmin
d

| IL(xi, yi) − IR(xi + d , yi) |

N = 9

C (xi, yi, d ; Θ)
Θ

5 × 5

2

Figure 1. Architectures of CNN for stereo matching. The number of layers  is 9 for Net1 and 5 for Net2. N



Rectified Linear Units (ReLu) are used for all the 
layers except for the last layer. We use valid padding in 
each layer and the size of the patch is chosen to be the 
same as the receptive field so that in the final output, 
the size of the patch is 1.  

For training the network, we divide the left images 
into small patches of size . Assume the 
center of the patch is located at , and the ground 
truth disparity value is . Since the images are 
rectified,  the epipolar lines are horizontal so we just 
need to search the matched patch along the horizontal 
direction. So we  can extract a patch of size 

 centered at the pixel 
  in the right image.  

The intuitive choice for the loss function that 
quantifies the difference between the probability 
distribution from the network output and a target 
distribution that peaks at the ground truth disparity 
value is a cross-entropy loss function. We use the 
cross-entropy loss function with a target distribution: 

  
      (3.2) 

where we apply a softmax to the cost function to get 
, and the target distribution is  

    (3.3) 

The target distribution we use is a discrete distribution. 
Naturally, we can choose a smooth distribution, for 
example a Laplacian distribution or a Gaussian 
distribution. Since Laplacian distribution has a less 
heavier tail, we use Laplacian in the training.: 

      (3.4) 

where we choose  . We will also test if using 
such a target distribution could improve the 
performance of training. 

To decrease the computational cost, we use another 
network architecture that makes use of dilated 
convolution. The architecture of the second network 
(Net2) is the same as that in Figure 1, with only 5 
layers ( ). We use dilated convolution in the 
network [ ] to increase the receptive field. With only 5 9
layers, we achieve the same receptive field as the 
original 9 layer network.  

The network is trained using using stochastic 
gradient descent back propagation with Adam instead 
of AdaGrad in the original paper. AdaGrad decays the 

learning rate aggressively because of the growing 
denominator, while Adam solves the problem by 
decaying the denominator as well. The learning rate is 
set to 0.01 first, and then after 24k iterations it is 
decreased by a factor of 5 for every 8k iterations [3].  

3.3. Cost aggregation and disparity optimization  

Cost aggregation and disparity optimization steps 
can be used after the cost computation step to improve 
the disparity estimation.  

The idea is based on the assumption that the depth 
and therefore disparity value changes smoothly. We 
perform cost aggregation using average pooling, in 
order to reduce the noise.  

We implement the disparity optimization step using 
semi-global matching (SGM). We define an energy 
function  of the disparity map , adding 
smoothness terms that penalize the discontinuity in 
disparity between adjacent pixels [6].  

   (3.5) 

where , and  represents neighbors of the 
pixel . The penalty for a disparity change of 1 is   
and that for a disparity larger than 2 is . 

Specifically, we use the matching cost for each 
direction  to minimize the energy : 

 

                    (3.6) 

In our implementation of SGM, we use only 4 
directions of  to perform line optimization. Typically, 
8 directions or 16 directions are used for better quality 
but with slower computation.  

Except for the constant penalty used in Ref. 6, we 
can also use a linear penalty term, 

          (3.7) 

which increases with the magnitude of disparity 
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change. We evaluate both the constant and linear SGM 
in our experiment. 

4. Experiments 

4.1. Dataset for training and evaluation  

We use the KITTI 2015 data set [ ], which includes 10
a collection of image pairs (200 training pairs and 200 
testing pairs) taken from two video cameras mounted 
on the roof of a car. The image pairs are rectified and 
the ground truth disparity maps measured using a 
rotating laser scanner. In our model, we use a patch 
size of , and therefore obtain about 12 
million patches for training from 160 training images. 
The rest 40 images are used for evaluation of the 
model. For training purpose, the patch images are 
grouped into mini-batches of 128 patches and sent to 
the network. To get a better accuracy, we would like to 
use the scene flow dataset [ ], which has more than 11
39,000 stereo frames in 960x540 pixel resolution. But 
due to limited computational resources, it is not 
possible for now.  

For evaluation of the implemented stereo matching 
algorithms, we will follow the 3px error in KITTI 2015 
data set: the percentage of bad pixels averaged over all 
ground truth pixels whose disparity error is larger than 
3px. We compute the 3px error for the 40 validation 
images. As noted in the KITTI 2015 dataset, a value of 
0 indicates an invalid pixel, so we exclude pixels with 
0 value in the evaluation. 

4.2. Training time and testing time  

A summary of training and testing time is shown in 
Table 1. The traditional method does not require 
training, while the deep learning models need to be 
trained. Since the architecture Net2 has fewer layers 
than Net1, the training time of Net2 is half of the 
training time for Net1, reduced from 450 ms/step to 
220 ms/step.  

In testing, the traditional method of matching cost 
computation takes 3 times more time than Net1 or 
Net2. Most of time is taken in SGM used for disparity 
optimization, which takes 100 more time than 
traditional cost volume computation. In our 
implementation, we use 4 directions of line 
optimization. Using 8 directions increase the 
computational time by a factor of 6, due to the much 
slower speed for diagonal directions. 

  

4.3. Convergence in network training  

The loss function decreases with the number of 

iterations. As can be seem from Figure 2, the loss 
function starts to converge around 20k iterations, for 
both two CNN architectures Net1 and Net2. The 
convergence curve is quite fuzzy. Increasing the size of 
the sample for training would help with this issue. 
Throughout this report, we use 50k iterations for 
training. 

We also investigate using a smooth Laplacian 

npatch = 37
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Table 1. Training and testing time. The testing time for 
Net1, Net2 and traditional methods does not include the time 

spent on average filling and SGM. 

Figure 2. Plot of loss as a function of number of iterations 
in training Net1 and Net2.

Training time 
(ms/step)

Testing time 
(sec)

Net1 450 1.7

Net2 220 1.6

Traditional — 4.7

Average 
filtering

— 0.5

SGM — 468

Figure 3. Plot of smoothed and normalized loss as a function 
of number of iterations in training Net1 with the discrete and 

Laplacian target distribution.



distribution as the target distribution. Figure 3 shows a 
comparison of the loss function, which is smoothed 
and normalized to the minimum value. It can be seen 
that the loss function using a Laplacian target 
distribution converges slightly faster than the case with 
a discrete target distribution. 

 

4.4.Accuracy of disparity map estimation 

We first evaluate our traditional method. An 
example of the disparity map estimation is shown in 
Figure 4. The disparity map calculated directly using a 
matching cost of AD is shown in Figure 4 (d), with a 
high 3px error of 50%. The error is reduced to 6.5% 
after cost aggregation using average pooling with a 
filter size of . The disparity map (Figure 4 (e)) 
much less noisier, but there is still some discontinuity 
in the disparity map. Since SGM adds smoothness to 
the disparity, the disparity discontinuity can be reduced 
by SGM using constant penalty, which is indeed 
observed in Figure 4 (f). With SGM, the error is 
reduced to 3.7%. Using SGM with linear penalty, we 
get a similar error of 3.6%. We can see that without 
cost aggregation and disparity optimization, the raw 
disparity map is very noisy and of low accuracy.  

Evaluating the performance on real-world data of 
KITTI2015 validation set, we find that without further 
processing the disparity estimation has very low 
accuracy, with an average 3 px error of 81% over the 
40 evaluation images. With average filtering with a 
filter size of , the disparity map less noisier than 
that before cost aggregation but still with a high error 
of 39%. After constant SGM optimization, the average 
3 px error is 25%; while using linear SGM, we can get 
the error down to 12%. The results are summarized in 
Table 2.  

In Figure 5 (c), we show an example of disparity 
map estimated using the traditional method. The 
disparity map is very noisy, with a 3 px error of 80%. 

In addition, the algorithm fails for textureless regions, 
as can be seen from the disparity value for the road. It 
also fails for the shadow on the walls, where there is a 
jump in the luminance of the image. We also notice 
that for reflective surfaces, the accuracy of disparity 
estimation is poor, for example, for the car in front. 
The disparity estimation is also difficult for regions 

with jumps in disparity (e.g., the leaves on the trees) 
and occlusions (e.g., the row of cars on the right).  

The disparity map after cost aggregation is shown in 
Figure 5 (d), with an error of 48%. The noise in the 
disparity map is reduced but the problems we mention 
above still exist. Then we use SGM with constant 
penalty to further optimize the disparity, as shown in 
Figure 5 (e), with 36% error. The accuracy of 
textureless regions and the shadow is improved. SGM 
with linear penalty can greatly reduce the error to 23%, 
as shown in Figure 5 (f). Compared to the result of 
constant SGM, the disparity estimation for the regions 
with jumps in disparity is improved. 

For deep learning stereo matching, we have trained 
the networks Net1 and Net2 as described in Figure 1. 
For Net1, the average 3 px error is 5.9%. The deep 
learning method, even without cost aggregation and 
SGM, has much better accuracy than the traditional 
method. With average filtering with a filter size of 

, the 3 px error is reduced slightly to 5.6%. When 
constant or linear SGM is applied, we get a 3 px error 
of 4.7% or 4.3%, respectively. 

5 × 5

7 × 7

5 × 5

5

Figure 4. An example of disparity estimation for Tsukuba 
scene.

Table 2. 3 pixel error of disparity estimation for different 
methods. 

3px error Raw After 
average 
filtering

After 
constant 
SGM

After 
linear 
SGM

Traditional 81% 39% 25% 12%

Net1 5.9% 5.6% 4.7% 4.3%

Net2 6.0% 5.7% 4.9% 4.4%

Net1 
(Laplacian)

5.9% 5.6% 4.8% 4.6%



An example of the estimated disparity map with 
Net1 is shown in Figure 5 (g), showing 21% error 
without CA and SGM. The region with reflective 
surfaces and occlusions, for example the cars, shows 
some big error. The disparity map after applying 
average filtering is shown in Figure 5 (h), with an error 
of 20%. We find that average pooling indeed clears out 
some noise in the disparity map but the accuracy of 
disparity estimation does not improve much. We 
further apply a linear SGM in Figure 5 (i), which 
shows an error of 14%. The discontinuity in the 
disparity map represented by the random variations are 
removed. We can see that the result is more accurate 
than the result of traditional method in Figure 5 (f), 
especially in the region with reflective surfaces.   

The example we discuss above is a difficult case for 
disparity estimation. The easiest case in the dataset is 
shown in Figure 6. Here, there is no difficulties caused 
by occlusions or jumps in disparity. The result of Net1 
with average filtering and SGM shows a 3px error of 
2.02%, while the traditional method shows an error of 
2.5%. Thus, for a simple case, the traditional method 
can achieve a comparable accuracy with the deep 
learning method. 

The other deep learning model (Net2) with dilation 
and fewer layers gives a comparable 3 px error of 5.7% 
when cost aggregation is applied, and an error of 4.4% 
with cost aggregation and SGM with linear penalty. 
The accuracy is comparable to Net1, while the training 
time is reduced by a factor of 2. An example of the 
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Figure 5. Examples of ground-truth and estimated disparity maps from KITTI2015 dataset.



disparity map is shown in Figure 5 (j). Comparing 
figures (h) and (j), we can see that the results is similar 
for the two different CNN architectures.  

When we use a smooth Laplacian target distribution 
instead of the discrete distribution for training the 
network Net1, the average 3 px error is 5.6% with 
average filtering, which is almost the same as the case 
of discrete target distribution. The error using linear 
SGM is 4.6%, slightly larger than 4.3% for discrete 
target distribution. 

  
5. Discussion and future work 
 We have implemented two stereo matching 
algorithms: a deep learning method and a traditional  
method with a matching cost of absolute difference. 
We have shown that the deep learning method of 
matching cost computation is more computational 
efficient for testing than the traditional method, but 
requires pre-training, unlike traditional methods. The 
deep learning method has better accuracy than the 
traditional method, especially for the difficult 
situations, for example, pictures with occlusions and 
reflective surfaces. For simple cases, traditional 
method can provide comparable accuracy. We have 
implemented the cost aggregation step using average 
filtering. We have also implemented the disparity 
optimization step using semi-global matching, which 
enforces smoothness constraint to the disparity map. 
 Two different structures of networks (Net1 and 
Net2) were trained and tested. The architecture Net2 
makes use of dilated convolution to reduce the 
computational cost without compromising the 
performance of the network. We also find that the 
convergence with a smooth target distribution is 
slightly faster than that with a discrete target 
distribution.  
 It can be seen that that the disparity map may still 
contain errors due to occlusions or invalid matches, 
even after cost aggregation and disparity optimization. 
For future work, we would like to implement the 
disparity refinement step to get more accuracy 
estimation. We notice that the most time consuming 
part in our implementation is the SGM step for cost 
optimization. In the future, we will modify our 
implementation to improve the computational 
efficiency of SGM. To improve the network training, 
we would like to use a larger dataset for training.  
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